\(\int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [776]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 79 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}-\frac {\tan (c+d x)}{a d}-\frac {\tan ^3(c+d x)}{3 a d} \]

[Out]

-arctanh(cos(d*x+c))/a/d+sec(d*x+c)/a/d+1/3*sec(d*x+c)^3/a/d-tan(d*x+c)/a/d-1/3*tan(d*x+c)^3/a/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2918, 2702, 308, 213, 3852} \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\tan ^3(c+d x)}{3 a d}-\frac {\tan (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}+\frac {\sec (c+d x)}{a d} \]

[In]

Int[(Csc[c + d*x]*Sec[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + Sec[c + d*x]/(a*d) + Sec[c + d*x]^3/(3*a*d) - Tan[c + d*x]/(a*d) - Tan[c + d*
x]^3/(3*a*d)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2702

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \sec ^4(c+d x) \, dx}{a}+\frac {\int \csc (c+d x) \sec ^4(c+d x) \, dx}{a} \\ & = \frac {\text {Subst}\left (\int \frac {x^4}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d}+\frac {\text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{a d} \\ & = -\frac {\tan (c+d x)}{a d}-\frac {\tan ^3(c+d x)}{3 a d}+\frac {\text {Subst}\left (\int \left (1+x^2+\frac {1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a d} \\ & = \frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}-\frac {\tan (c+d x)}{a d}-\frac {\tan ^3(c+d x)}{3 a d}+\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d} \\ & = -\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}-\frac {\tan (c+d x)}{a d}-\frac {\tan ^3(c+d x)}{3 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.89 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {-6 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+6 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {1}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {3}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}-\frac {2}{\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}-\frac {11}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}\right )}{6 a d} \]

[In]

Integrate[(Csc[c + d*x]*Sec[c + d*x]^2)/(a + a*Sin[c + d*x]),x]

[Out]

(-6*Log[Cos[(c + d*x)/2]] + 6*Log[Sin[(c + d*x)/2]] + (Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^(-2) + Sin[(c + d*
x)/2]*(3/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2]) - 2/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 - 11/(Cos[(c + d*x)
/2] + Sin[(c + d*x)/2])))/(6*a*d)

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.00

method result size
derivativedivides \(\frac {-\frac {1}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {5}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d a}\) \(79\)
default \(\frac {-\frac {1}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {5}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d a}\) \(79\)
norman \(\frac {-\frac {8}{3 a d}+\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(91\)
parallelrisch \(\frac {3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8}{3 d a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}\) \(97\)
risch \(\frac {4 i {\mathrm e}^{2 i \left (d x +c \right )}+2 \,{\mathrm e}^{3 i \left (d x +c \right )}+\frac {4 i}{3}+\frac {2 \,{\mathrm e}^{i \left (d x +c \right )}}{3}}{\left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{3} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}\) \(112\)

[In]

int(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(-1/2/(tan(1/2*d*x+1/2*c)-1)+ln(tan(1/2*d*x+1/2*c))+2/3/(tan(1/2*d*x+1/2*c)+1)^3-1/(tan(1/2*d*x+1/2*c)+1
)^2+5/2/(tan(1/2*d*x+1/2*c)+1))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.46 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {4 \, \cos \left (d x + c\right )^{2} - 3 \, {\left (\cos \left (d x + c\right ) \sin \left (d x + c\right ) + \cos \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 3 \, {\left (\cos \left (d x + c\right ) \sin \left (d x + c\right ) + \cos \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, \sin \left (d x + c\right ) + 4}{6 \, {\left (a d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(4*cos(d*x + c)^2 - 3*(cos(d*x + c)*sin(d*x + c) + cos(d*x + c))*log(1/2*cos(d*x + c) + 1/2) + 3*(cos(d*x
+ c)*sin(d*x + c) + cos(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) + 2*sin(d*x + c) + 4)/(a*d*cos(d*x + c)*sin(d*x
 + c) + a*d*cos(d*x + c))

Sympy [F]

\[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {\csc {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)**2/(a+a*sin(d*x+c)),x)

[Out]

Integral(csc(c + d*x)*sec(c + d*x)**2/(sin(c + d*x) + 1), x)/a

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.72 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {2 \, {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {3 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + 4\right )}}{a + \frac {2 \, a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {2 \, a \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {3 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{3 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/3*(2*(5*sin(d*x + c)/(cos(d*x + c) + 1) - 3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 4)/(a + 2*a*sin(d*x + c)/(
cos(d*x + c) + 1) - 2*a*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4) + 3*log(s
in(d*x + c)/(cos(d*x + c) + 1))/a)/d

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.05 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {3}{a {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}} + \frac {15 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 13}{a {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(6*log(abs(tan(1/2*d*x + 1/2*c)))/a - 3/(a*(tan(1/2*d*x + 1/2*c) - 1)) + (15*tan(1/2*d*x + 1/2*c)^2 + 24*t
an(1/2*d*x + 1/2*c) + 13)/(a*(tan(1/2*d*x + 1/2*c) + 1)^3))/d

Mupad [B] (verification not implemented)

Time = 12.42 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.16 \[ \int \frac {\csc (c+d x) \sec ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}+\frac {-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\frac {10\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+\frac {8}{3}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )} \]

[In]

int(1/(cos(c + d*x)^2*sin(c + d*x)*(a + a*sin(c + d*x))),x)

[Out]

log(tan(c/2 + (d*x)/2))/(a*d) + ((10*tan(c/2 + (d*x)/2))/3 - 2*tan(c/2 + (d*x)/2)^3 + 8/3)/(d*(a + 2*a*tan(c/2
 + (d*x)/2) - 2*a*tan(c/2 + (d*x)/2)^3 - a*tan(c/2 + (d*x)/2)^4))